CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach

Abstract
With the fast-growing demand of location-based services in indoor environments, indoor positioning based on fingerprinting has attracted significant interest due to its high accuracy. In this paper, we present a novel deep-learning-based indoor fingerprinting system using channel state information (CSI), which is termed DeepFi. Based on three hypotheses on CSI, the DeepFi system architecture includes an offline training phase and an online localization phase. In the offline training phase, deep learning is utilized to train all the weights of a deep network as fingerprints. Moreover, a greedy learning algorithm is used to train the weights layer by layer to reduce complexity. In the online localization phase, we use a probabilistic method based on the radial basis function to obtain the estimated location. Experimental results are presented to confirm that DeepFi can effectively reduce location error, compared with three existing methods in two representative indoor environments.
Funding Information
  • Directorate for Computer and Information Science and Engineering (CNS-1247955)

This publication has 40 references indexed in Scilit: