Diamines Can Initiate New Particle Formation in the Atmosphere

Abstract
Recent experimental evidence suggests that diamines can enhance atmospheric new particle formation more efficiently compared to monoamines such as dimethylamine. Here we investigate the molecular interactions between sulfuric acid (sa) and the diamine putrescine (put) using computational methods. The molecular structure of up to four sulfuric acid molecules and up to four putrescine molecules were obtained at the ωB97X-D/6-31++G(d,p) level of theory. We utilized a domain local pair natural orbital coupled cluster method (DLPNO-CCSD(T)/aug-cc-pVTZ) to obtain highly accurate binding energies of the clusters. We find that the (sa)(put) clusters show more ionic character than clusters consisting of sulfuric acid and dimethylamine (dma) by readily forming several sulfate ions in the cluster. To estimate the stability of the clusters, we calculate the evaporation rates and compare them to ESI-APi-TOF measurements. Using the atmospheric cluster dynamics code (ACDC), we simulate and compare the new particle formation rates between the (sa)(put) and (sa)(dma) cluster systems. We find that putrescine significantly enhances the formation of new particles compared to dimethylamine. Our findings suggest that a large range of amines with different basicity is capable of explaining various regions of the observed new particle formation events. These results indicate that diamines, or related compounds with high basicity, might be important species in forming the initial cluster with sulfuric acid and subsequently more abundant amines with lower basicity can assist in the new particle formation process by attaching to the sulfuric acid-diamine nucleus.
Funding Information
  • Carlsbergfondet
  • H2020 European Research Council (692891-DAMOCLES)