Abstract
Research into fabrication of hip joint replacements combines knowledge from distinct domains, such as engineering, materials and medical fields. Recent computer assisted technologies have played an important role in the medical field. Unlike the modelling of most of the human bones, the creation of an accurate 3D model of a pelvic bone has been a challenging task. The main source of difficulties in this case has proven to be the complexity of the structure of the pelvis, having basically a free-form shape with a hole in the middle constituting some over-shadowed areas (undercuts), various cavities, areas with high form curvature, variable wall thickness with some very thin sections and inside layers with different mechanical properties. In this research work, a pelvic bone is generated using reverse engineering, rapid prototyping and rapid tooling techniques. The geometric data obtained from reverse engineering through laser scanning are used and manipulated to create accurate 3D CAD representations of these devices. These CAD models can be used for various virtual tests and simulations, as well as for reproduction through rapid manufacturing processes and then used as prototypes in tooling, physical tests and planning of surgical operations.

This publication has 10 references indexed in Scilit: