Merlin Is a Potent Inhibitor of Glioma Growth

Abstract
Neurofibromatosis 2 (NF2) is an inherited cancer syndrome in which affected individuals develop nervous system tumors, including schwannomas, meningiomas, and ependymomas. The NF2 protein merlin (or schwannomin) is a member of the Band 4.1 superfamily of proteins, which serve as linkers between transmembrane proteins and the actin cytoskeleton. In addition to mutational inactivation of the NF2 gene in NF2-associated tumors, mutations and loss of merlin expression have also been reported in other types of cancers. In the present study, we show that merlin expression is dramatically reduced in human malignant gliomas and that reexpression of functional merlin dramatically inhibits both subcutaneous and intracranial growth of human glioma cells in mice. We further show that merlin reexpression inhibits glioma cell proliferation and promotes apoptosis in vivo. Using microarray analysis, we identify altered expression of specific molecules that play key roles in cell proliferation, survival, and motility. These merlin-induced changes of gene expression were confirmed by real-time quantitative PCR, Western blotting, and functional assays. These results indicate that reexpression of merlin correlates with activation of mammalian sterile 20-like 1/2–large tumor suppressor 2 signaling pathway and inhibition of canonical and noncanonical Wnt signals. Collectively, our results show that merlin is a potent inhibitor of high-grade human glioma. [Cancer Res 2008;68(14):5733–42]