Modeling and analyzing HIV transmission: the effect of contact patterns

Abstract
A compartmental model is presented for the spread of HIV in a homosexual population divided into subgroups by degree of sexual activity. The model includes constant recruitment rates for the susceptibles in the subgroups. It incorporates the long infectious period of HIV-infected individuals and allows one to vary infectiousness over the infectious period. A new pattern of mixing, termed preferred mixing, is defined, in which a fraction of a group's contacts can be reserved for within-group contacts, the remainder being subject to proportional mixing. The fraction reserved may differ among groups. In addition, the classic definition of reproductive number is generalized to show that for heterogeneous populations in general the endemic threshold is [beta]DcY, where cY is the mean number of contacts per infective. The most important finding is that the pattern of contacts between the different groups has a major effect on the spread of HIV, an effect inadequately recognized or studied heretofore