A two-temperature model of the inductively coupled rf plasma

Abstract
A two-temperature model is proposed for the computation of the two-dimensional flow and temperature fields in a rf inductively coupled plasma torch. The model is applicable to monatomic gases. The results obtained for an argon plasma indicate that, while at atmospheric conditions, deviations from local thermodynamic equilibrium (LTE) are relatively small, the situation is different under reduced pressure conditions, where substantial deviations from LTE have been noted, particularly in the energy addition region.