High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor

Abstract
Single-crystal 3C-silicon carbide (SiC) capacitive pressure sensors are proposed for high-temperature sensing applications. The prototype device consists of an edge-clamped circular 3C-SiC diaphragm with a radius of 400 /spl mu/m and a thickness of 0.5 /spl mu/m suspended over a 2-/spl mu/m sealed cavity on a silicon substrate. The 3C-SiC film is grown epitaxially on a 100-mm diameter silicon substrate by atmospheric pressure chemical vapor deposition. The fabricated sensor demonstrates a high-temperature sensing capability up to 400/spl deg/C, limited by the test setup. At 400/spl deg/C, the device achieves a linear characteristic response between 1100 and 1760 torr with a sensitivity of 7.7 fF/torr, a linearity of 2.1%, and a hysterisis of 3.7% with a sensing repeatability of 39 torr (52 mbar). A wide range of sensor specifications, such as linear ranges, sensitivities, and capacitance values, can be achieved by choosing the proper device geometrical parameters.

This publication has 10 references indexed in Scilit: