Low Strain Dynamic Properties of Filled Rubbers

Abstract
Carbon black does not exist as single spherical particles but forms itself into a rodlike primary structure. These rodlike structures then form into an aggregated secondary network. This secondary network is believed to be held together by Van der Waals-London attraction forces. The decrease in shear modulus of filled rubber vulcanizates with strain is due almost certainly to these secondary forces. Special mixing techniques such as attrition of the carbon black, increased time of mixing, or the addition of chemical promoters which aim at dispersing the carbon black within the mix better are shown to decrease the value of G′0−G′∞. The absence of any modulus change with strain for unfilled vulcanizates and secondly the little change observed in values of G′0−G′∞ with increasing vulcanization of the rubber when containing the same amount of carbon black confirms that the decrease in modulus with strain amplitude is in no way associated with the gum phase of the filled vulcanizate. The similarity in behavior of carbon black filled rubbers with clay/water and clay/rubber systems indicates that the decrease in modulus with amplitude is due to the breakdown of the three dimensional filler aggregates. A number of rheological studies on clay systems has confirmed that clay particles form into rigid three dimensional structures when dispersed in a medium. Evidence for the aggregated filler structure to be held together by Van der Waals-London attraction forces comes from the reasonable agreement between the experimental values for the forces required to breakdown the carbon black aggregates in paraffin oil and the forces calculated from Van den Tempel's model for flocculated solid particles in a liquid. The successful application of a domain model to the hysteretical behavior exhibited by carbon black filled vulcanizates at low strains indicates that the carbon black structure breaks down under stress but reforms to the original state when the stress is removed. This conclusion is also supported by the similarity in behavior between filled rubbers and a dendritic crystal structure of PBNA in rubber. Under the optical microscope the PBNA is seen to break down and reform under a stress-strain cycle. The breakdown and reformation of this secondary aggregated carbon black structure increases the hysteresis in filled rubber vulcanizates. Other sources of hysteresis include viscoelasticity of the polymer, crystallization, stress-softening, and changes in network structure (e.g., breakage of weak crosslinks). These mechanisms have been discussed in depth in previous publications. Recent work has shown, however, that the strength of a rubber is dependent on the combined effect of the different hysteretical mechanisms. The breakdown and reformation of the carbon black structure at low strains in filler reinforced rubbers therefore not only affects the heat build up, transmissibility, and fatigue behavior but also influences the failure properties of the filled vulcanizate.