Activity-sensitive architectural power analysis

Abstract
Prompted by demands for portability and low-cost packaging, the electronics industry has begun to view power consumption as a critical design criterion. As such there is a growing need for tools that can accurately predict power consumption early in the design process, many high-level power analysis models do not adequately model activity, however, leading to inaccurate results. This paper describes an activity-sensitive power analysis strategy for datapath, memory, control path, and interconnect elements. Since datapath and memory modeling has been described in a previous publication, this paper focuses mainly on a new Activity-Based Control (ABC) model and on a hierarchical interconnect analysis strategy that enables estimates of chip area as well as power consumption. Architecture-level estimates are compared to switch-level measurements based on net lists extracted from the layouts of three chips: a digital filter, a global controller, and a microprocessor. The average power estimation error is about 9% with a standard deviation of 10%, and the area estimates err on average by 14% with a standard deviation of 6%.

This publication has 21 references indexed in Scilit: