Spontaneous formation of autocatalytic sets with self-replicating inorganic metal oxide clusters

Abstract
Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo12} ≡ [PMo12O40]3– Keggin ion, and {Mo36} ≡ [H3Mo57M6(NO)6O183(H2O)18]22– cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo154} ≡ [Mo154O462H14(H2O)70]14–, {Mo132} ≡ [MoVI72MoV60O372(CH3COO)30(H2O)72]42– ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo12}⊂{Mo124Ce4} ≡ [H16MoVI100MoV24Ce4O376(H2O)56 (PMoVI10MoV2O40)(C6H12N2O4S2)4]5– nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network.

This publication has 22 references indexed in Scilit: