Abstract
Electrometric and spectrophotometric titrations showed vancomycin to contain groups having pK values of about 2.9, 7.2, 8.6, 9.6, 10.5 and 11.7. Of these the four last-named were phenolic. Titration above pH11 and below pH1 was irreversible and antibiotic potency was destroyed. Combination with the specific peptide diacetyl-l-lysyl-d-alanyl-d-alanine hindered the titration of the first three phenolic groups. Spectrophotometric titration of iodovancomycin showed that the phenolic group with pK 9.6 was the one iodinated. The stability of the vancomycin–peptide complex in the range pH1–13 showed that complex-formation occurred only when carboxyl groups were ionized and the phenolic groups were non-ionized. The complex was formed in concentrations of urea up to 8m, of potassium chloride up to 4m, of sodium dodecyl sulphate up to 1%, and at temperatures up to 60°C. From titration curves, organic chlorine and iodine analysis, and combination with peptide, a minimum molecular weight for vancomycin of 1700–1800 was estimated. Optical-rotatory-dispersion and circular-dichroism experiments suggested that vancomycin has only limited conformational flexibility. Both vancomycin and its complexes with peptide exhibited properties suggesting aggregation. Vancomycin and iodovancomycin can be fractionated into a main fraction and at least three minor components. The isolation of these fractions salt-free is described and their antibiotic properties are shown to correlate with their ability to form complexes with peptide.