Abstract
The majority of tactical weapons systems require that manned maneuverable vehicles, such as aircraft, ships, and submarines, be tracked accurately. An optimal Kalman filter has been derived for this purpose using a target model that is simple to implement and that represents closely the motions of maneuvering targets. Using this filter, parametric tracking accuracy data have been generated as a function of target maneuver characteristics, sensor observation noise, and data rate and that permits rapid a priori estimates of tracking performance to be made when maneuvering targets are to be tracked by sensors providing any combination of range, bearing, and elevation measurements.

This publication has 3 references indexed in Scilit: