The effects of land use types, management practices and slope classes on selected soil physico-chemical properties in Zikre watershed, North-Western Ethiopia

Abstract
Background: Land degradation is one of the major threats to food security and natural resources conservation Zikre watershed. The objective of the study was to investigate the effects of land use types, management practices and slope classes on soil physico-chemical properties. Results: Results of the experiment indicated highest mean values of total nitrogen (0.23%), organic matter (5.01%) and cation exchange capacity (35.44 cmol(+) kg−1) were recorded under the natural forest and the lowest values of the same (0.12%, 2.57% and 26.08 cmol(+) kg−1, respectively) were registered in crop lands. Available phosphorus content was the highest (6.18 mg kg1) in crop lands and the lowest (1.33 mg kg−1) in grazing lands. Comparing management practices the highest mean values of available phosphorus (18.41 mg kg−1), organic matter (5.88%) and total nitrogen (0.29%) were recorded from the cultivated land treated with both manure and soil bund compared to sole soil bund, sole manure and the control plots. Considering the slope classes, the higher mean values of total nitrogen (0.19%), organic matter (4.49%) and cation exchange capacity (33.09 cmol(+) kg1) were recorded in the lower slope classes followed by middle (0.17%, 3.39% and 30.58 cmol(+) kg−1, respectively) and upper slope classes (0.14%, 2.65% and 27.36 cmol(+) kg−1, respectively). Conclusions: To conclude, conversion of forest lands to cultivated and grazing lands had detrimental effects on the soil physico-chemical properties; whereas construction of soil bunds on farm fields and application of manure improve the same under subsistence farming systems.