Bioenergetics and diving activity of internesting leatherback turtlesDermochelys coriaceaat Parque Nacional Marino Las Baulas, Costa Rica

Abstract
Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20–0.74 W kg–1) and water fluxes (16–30% TBW day–1, where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8±2.4 min (±1 s.d.), bottom times (2.7±0.8 min), and percentage of time spent in water temperatures (Tw) ≤24°C (9.5±5.7%) increased with increasing mean maximum dive depths (22.6±7.1 m; all P≤0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw≤24°C (all r2≥0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7–44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.