Collision Mortality Has No Discernible Effect on Population Trends of North American Birds

Abstract
Avian biodiversity is threatened by numerous anthropogenic factors and migratory species are especially at risk. Migrating birds frequently collide with manmade structures and such losses are believed to represent the majority of anthropogenic mortality for North American birds. However, estimates of total collision mortality range across several orders of magnitude and effects on population dynamics remain unknown. Herein, we develop a novel method to assess relative vulnerability to anthropogenic threats, which we demonstrate using 243,103 collision records from 188 species of eastern North American landbirds. After correcting mortality estimates for variation attributable to population size and geographic overlap with potential collision structures, we found that per capita vulnerability to collision with buildings and towers varied over more than four orders of magnitude among species. Species that migrate long distances or at night were much more likely to be killed by collisions than year-round residents or diurnal migrants. However, there was no correlation between relative collision mortality and long-term population trends for these same species. Thus, although millions of North American birds are killed annually by collisions with manmade structures, this source of mortality has no discernible effect on populations.