The BXD21/TyJ recombinant inbred strain as a model for innate inflammatory response in distinct brain regions

Oxidative stress and inflammatory cytokines affect the human brain, increasing the risk for mood and cognitive disorders. Such risk might be selective to brain-specific regions. Here, we determined whether BXD recombinant inbred (RI) mice strains are more suitable than C57BL/6J mice for the understanding of the relationship between antioxidant response and inflammatory responses. We hypothesized that inflammatory responses could be independent of antioxidant response and be inherent to brain-specific regions. This hypothesis will be addressed by the analyses of mRNA expression. We explored, at 7-months-of-age, the innate activation of proinflammatory cytokines (tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6), as well as Kelch-like ECH-associating protein 1 (Keap1), nuclear factor erythroid 2 related factor 2 (Nrf2) and glutathione peroxidase 1 (Gpx1) mRNA in both male and female BXD84/RwwJ RI, BXD21/TyJ RI and control strain (C57BL/6J mice). We report that: (1) The cerebellum is more sensitive to antioxidant response in the BXD21/TyJ RI strain; (2) The cerebellum, hippocampus and striatum show increased levels of cytokines in the BXD21/TyJ RI strain; (3) The BXD RI strain has lower brain weight relative to control strain (C57BL/6 mice). In conclusion, our novel data show the utility of the BXD21/TyJ RI strain mice in offering mechanistic insight into Nrf2's role in the inflammatory system.