Detection of K-ras mutations in lung carcinomas: relationship to prognosis.

  • 1 February 1996
    • journal article
    • Vol. 2 (2), 411-8
Abstract
The K-ras mutation is one of the most common genetic alterations found in human lung cancer. To evaluate the prognostic value of ras gene alterations in lung cancer in a U.S. population, we have screened 173 human lung tumors, which included 127 adenocarcinomas, 37 squamous carcinomas, and 9 adenosquamous carcinomas, for mutations in the K-ras gene using the combination of the PCR and denaturing gradient gel electrophoresis. Forty-three tumors contained K-ras mutations. Of these, 41 were identified among the adenocarcinomas (32%), 1 among the squamous carcinomas (2.7%), and 1 among the adenosquamous carcinomas (11%). Forty of these mutations were found in codon 12 and consisted of 24 G to T transversions, 12 G to A transitions, 2 G to C transversions, and 1 double GG to TT mutation. Two other G to T transversions were found in codon 13, and 1 A to C transversion was found in codon 61. The data showed that gender did not seem to affect the incidence and the types of the K-ras mutations or amino acid changes. Examination of the mutations in adenocarcinomas in relation to overall survival showed no difference in adenocarcinomas with K-ras mutations compared with K-ras-negative adenocarcinomas. However, the substitution of the wild-type GGT (glycine) at codon 12 with a GTT (valine) or a CGT (arginine) showed a strong trend (P = 0.07) toward a poorer prognosis compared with wild-type or other amino acid substitutions. Substitution of the wild-type glycine for aspartate (GAT) showed a strong trend (P = 0.06) for a better outcome than the valine or arginine substitution. Although these trends will require larger patient populations for verification, these data suggest that the prognostic significance of K-ras mutations may depend on the amino acid substitution in the p21(ras) protein.