Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes

Abstract
In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O‐demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N1‐acetyl‐N2‐formyl‐5‐methoxy‐kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N‐acetylserotonin, 2‐hydroxymelatonin, 6‐hydroxymelatonin and the same two unknown products. Eadie–Hofstee plots for 6‐hydroxylation and O‐demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower Km value) and higher Vmax for melatonin 6‐hydroxylation and O‐demethylation for both high‐affinity and low‐affinity components as compared with microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high‐ and low‐affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P450s metabolize melatonin principally by 6‐hydroxylation, with O‐demethylation representing a minor metabolic pathway.