Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats

Abstract
Fish-bone peptides (FBP) with a high affinity to Ca were isolated using hydroxyapatite affinity chromatography, and FBP II with a high ratio of phosphopeptide was fractionated in the range of molecular weight 5·0–1·0kDa by ultramembrane filtration. In vitro study elucidated that FBP II could inhibit the formation of insoluble Ca salts in neutral pH. In vivo effects of FBP II on Ca bioavailability were further examined in the ovariectomised rat. During the experimental period, Ca retention was increased and loss of bone mineral was decreased by FBP II supplementation in ovariectomised rats. After the low-Ca diet, the FBP II diet, including both normal level of Ca and vitamin D, significantly decreased Ca loss in faeces and increased Ca retention compared with the control diet. The levels of femoral total Ca, bone mineral density, and strength were also significantly increased by the FBP II diet to levels similar to those of the casein phosphopeptide diet group (no difference; P>0·05). In the present study, the results proved the beneficial effects of fish-meal in preventing Ca deficiency due to increased Ca bioavailability by FBP intake