Numerical Simulation of Extrusion Process and Die Structure Optimization for a Complex Aluminum Multicavity Wallboard of High-Speed Train

Abstract
The extrusion die plays a crucial role in the quality control of aluminum alloy profile production. In practice, the extrusion die design mainly depends on the experience and intuition of the die designers. The designed and manufactured dies are usually tested and modified many times before putting into practical extrusion production, and difficult to be guaranteed as optimal ones. In this paper a method of die design based on numerical simulation was proposed in order to optimize the die structure and enhance the level of die design. Firstly, the extrusion process of a large wallboard of high-speed train was simulated by means of HyperXtrude software. It was found that a severe non-uniform velocity distribution emerged in the cross-section of the extrudate and twist deformation occurred, therefore the initial die was not an acceptable one. Then, three times of modifications to the die structure were made to optimize the die structure and improve the product quality. Finally, an optimal die structure with uniform material flow velocity in the cross-section of the die exit was obtained. A sound wallboard extrudate of high-speed train was produced. The die design methods for complex extrusion profiles were summarized and proposed, including the design methods of porthole area of multi-cavity dies, the baffle plate, and the sunken port bridge structure.

This publication has 21 references indexed in Scilit: