Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide

Abstract
Using reduced graphene oxide (RGO) as a two-dimensional support, we have succeeded in selective anchoring of semiconductor and metal nanoparticles at separate sites. Photogenerated electrons from UV-irradiated TiO2 are transported across RGO to reduce silver ions into silver nanoparticles at a location distinct from the TiO2 anchored site. The ability of RGO to store and shuttle electrons, as visualized via a stepwise electron transfer process, demonstrates its capability to serve as a catalyst nanomat and transfer electrons on demand to adsorbed species. These findings pave the way for the development of next generation catalyst systems and can spur advancements in graphene-based composites for chemical and biological sensors.