Motion Coordination with Distributed Information

Abstract
Motion coordination is a remarkable phenomenon in biological systems and an extremely useful tool for groups of vehicles, mobile sensors, and embedded robotic systems. For many applications, teams of mobile autonomous agents need the ability to deploy over a region, assume a specified pattern, rendezvous at a common point, or move in a synchronized manner. The objective of this article is to illustrate the use of systems theory to analyze emergent behaviors in animal groups and to design autonomous and reliable robotic networks. We present and survey some recently developed theoretical tools for modeling, analysis, and design of motion coordination algorithms in both continuous and discrete time. We pay special attention to the distributed character of coordination algorithms, the characterization of their performance, and the development of design methodologies that provide mobile networks with provably correct cooperative strategies.

This publication has 39 references indexed in Scilit: