Solanum lyratumExtracts Induce Extrinsic and Intrinsic Pathways of Apoptosis in WEHI-3 Murine Leukemia Cells and Inhibit Allograft Tumor

Abstract
We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced bySolanum lyratumextracts (SLE) or diosgenin in WEHI-3 murine leukemia cellsin vitroand antitumor activityin vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and inducedG0/G1phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. Thein vivostudy demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-inducedG0/G1phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activityin vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.
Funding Information
  • National Science Council (NSC 97?2320-B-039-004-MY3, DOH101-TD-C-111-005, CMU96-086, CMU96-087)

This publication has 56 references indexed in Scilit: