Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts

Abstract
The Dutch coast is characterized by sandy beaches flanked by dunes. Understanding the morphology of the coast is essential for defense against flooding of the hinterland. Because most dramatic changes of the beach and the first dune row happen during storms, it is important to assess the state of the coast immediately after a storm. This is expensive and difficult to organize with Airborne Laser Scanning (ALS). Therefore, the performance of a Land-based Mobile Mapping System (LMMS) in mapping a stretch of sandy Dutch coast of 6 km near the municipality of Egmond is evaluated in this research. A test data set was obtained by provider Geomaat using the StreetMapper LMMS system. Both the relative quality of laser point heights and of a derived Digital Terrain model (DTM) are assessed. First, the height precision of laser points is assessed a priori by random error propagation, and a posteriori by calculating the height differences between close-by points. In the a priori case, the result is a theoretical laser point precision of around 5 cm. In the a posteriori approach it is shown that on a flat beach a relative precision of 3 mm is achieved, and that almost no internal biases exist. In the second analysis, a DTM with a grid size of 1 m is obtained using moving least squares. Each grid point height includes a quality description, which incorporates both measurement precision and terrain roughness. Although some problems remain with the scanning height of 2 m, which causes shadow-effect behind low dunes, it is concluded that a laser LMMS enables the acquisition of a high quality DTM product, which is available within two days.