Identification of a Functional Connectome for Long-Term Fear Memory in Mice

Abstract
Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression. Memory retrieval is thought to involve the coordinated activation of multiple regions of the brain, rather than localized activity in a specific region. In order to visualize networks of brain regions activated by recall of a fear memory in mice, we quantified expression of an activity-regulated gene (c-fos) that is induced by neural activity. This allowed us to identify collections of brain regions where Fos expression co-varies across mice, and presumably form components of a network that are co-active during recall of long-term fear memory. This analysis suggested that expression of a long-term fear memory is an emergent property of large scale neural network interactions. This network has a distinct thalamic-hippocampal-cortical signature and, like many real-world networks as well as other anatomical and functional brain networks, has small-world architecture with a subset of highly-connected hub nodes that may play more central roles in memory expression.