Conical Nanopore Membranes. Preparation and Transport Properties

Abstract
We have been investigating applications of nanopore membranes in analytical chemistryspecifically in membrane-based bioseparations, in electroanalytical chemistry, and in the development of new approaches to biosensor design. Membranes that have conically shaped pores (as opposed to the more conventional cylindrical shape) may offer some advantages for these applications. We describe here a simple plasma-etch method that converts cylindrical nanopores in track-etched polymeric membranes into conically shaped pores. This method allows for control of the shape of the resulting conical nanopores. For example, the plasma-etched pores may be cylindrical through most of the membrane thickness blossoming into cones at one face of the membrane (trumpet-shaped), or they may be nearly perfect cones. The key advantage of the conical pore shape is a dramatic enhancement in the rate of transport through the membrane, relative to an analogous cylindrical pore membrane. We demonstrate this here by measuring the ionic resistances of the plasma-etched conical pore membranes.