Sequence‐specific 1H‐NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.

Abstract
The lipoyl domain (residues 1-85) of the lipoate-acetyltransferase polypeptide chain of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been subjected to detailed structural analysis by means of two-dimensional (2D) 1H-NMR spectroscopy at 400 MHz. Sequence-specific proton resonance assignments were made, but at this field strength not all of the side-chain protons could be assigned, especially from complex spin systems like those of leucine, proline and lysine residues. Measurement of short-range interproton distances identified two extensive regions of beta-sheet, each containing four anti-parallel peptide strands. The lipoyl-lysine residue (Lys42) is located in a tight turn at a corner of one sheet, the N-terminal and C-terminal residues of the domain are close together in two adjacent beta-strands in the other. The lipoylated and unlipoylated forms of the domain have almost identical spectra, indicating that there is little, if any, conformational change in the protein as a result of the post-translational modification.

This publication has 31 references indexed in Scilit: