Inhibition of 3' modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins

Abstract
Plant viruses are inducers and targets of RNA silencing. Viruses counteract with RNA silencing by expressing silencing-suppressor proteins. Many of the identified proteins bind siRNAs, which prevents assembly of silencing effector complexes, and also interfere with their 3′ methylation, which protects them against degradation. Here, we investigated the 3′ modification of silencing-related small RNAs in Nicotiana benthamiana plants infected with viruses expressing RNA silencing suppressors, the p19 protein of Carnation Italian ringspot virus (CIRV) and HC-Pro of Tobacco etch virus (TEV). We found that CIRV had only a slight effect on viral siRNA 3′ modification, but TEV significantly inhibited the 3′ modification of si/miRNAs. We also found that p19 and HC-Pro were able to bind both 3′ modified and non-modified small RNAs in vivo. The findings suggest that the 3′ modification of viral siRNAs occurs in the cytoplasm, though miRNA 3′ modification likely takes place in the nucleus as well. Both silencing suppressors inhibited the 3′ modification of si/miRNAs when they and small RNAs were transiently co-expressed, suggesting that the inhibition of si/miRNA 3′ modification requires spatial and temporal co-expression. Finally, our data revealed that a HEN1-like methyltransferase might account for the small RNA modification at the their 3′-terminal nucleotide in N. benthamiana.