Evaluating Different Fixation Protocols for Spectral Cytopathology, Part 1

Abstract
Spectral cytopathology (SCP) is a novel approach for disease diagnosis that utilizes infrared spectroscopy to interrogate the biochemical components of cellular samples and multivariate statistical methods, such as principal component analysis, to analyze and diagnose spectra. SCP has taken vast strides in its application for disease diagnosis over the past decade; however, fixation-induced changes and sample handling methods are still not systematically understood. Conversely, fixation and staining methods in conventional cytopathology, typically involving protocols to maintain the morphology of cells, have been documented and widely accepted for nearly a century. For SCP, fixation procedures must preserve the biochemical composition of samples so that spectral changes significant to disease diagnosis are not masked. We report efforts to study the effects of fixation protocols commonly used in traditional cytopathology and SCP, including fixed and unfixed methods applied to exfoliated oral (buccal) mucosa cells. Data suggest that the length of time in fixative and duration of sample storage via desiccation contribute to minor spectral changes where spectra are nearly superimposable. These findings illustrate that changes influenced by fixation are negligible in comparison to changes induced by disease.