Classical transition state theory: A lower bound to the reaction probability

Abstract
We derive a rigorous lower bound to the microcanonical reaction probability in classical collinear atom–diatom collisions. This lower bound complements the upper bound provided by transition state theory, and the information needed to calculate the bound is acquired automatically in the search for the periodic orbit dividing surfaces that are possible transition states for the reaction. Numerical calculations for F+H2 and H+Cl2 over a wide energy range show that the lower bound provides the best available estimate of the reaction probability, short of a full dynamical calculation.