Polymeric elements for adaptive networks

Abstract
Polymeric electrochemical elements of adaptive networks are considered. The main features of these elements are compared with the elements of the nervous system of the snail Lymnaea stagnalis. In particular, synthetic analogues of neurons and synapses are fabricated. The capability of the system for learning is demonstrated with a model of the simplest network composed of eight electrochemical elements. An alternative approach based on the formation of fiber networks is proposed. This approach will make it possible to fabricate more complex systems with a random distribution of mutual contacts between elements.