Abstract
An assessment of developing eutrophic conditions in small temperate lagoons along the coast of Rhode Island suggests that in such shallow, macrophyte based systems the response to nutrient enrichment differs from that described for plankton based systems. The nitrogen loadings per unit area of the salt ponds are 240–770 mmol N per m2 per year. Instead of the high nutrient concentrations, increased phytoplankton biomass and turbidity, leading to eventual loss of benthic macrophytes described for such systems as the Chesapeake, Patuxent and Appalachicola Bay, nutrient enrichment of the Rhode Island lagoons has led to increased growth of marine macroalgae. The increased macroalgal growth appears to alter the benthic habitat and a shift from a grazing to detrital food chain appears to be impacting important shellfisheries. As more extensive areas of organic sediments develop, geochemical cycling changes, resulting in higher rates of nitrogen remineralization and accelerated eutrophication. The major sources of nitrogen inputs to the salt ponds have been identified and a series of management initiatives have been designed to limit inputs from present and potential development within the watersheds of the lagoons.