Health Care and Precision Medicine Research: Analysis of a Scalable Data Science Platform

Abstract
Journal of Medical Internet Research - International Scientific Journal for Medical Research, Information and Communication on the Internet #Preprint #PeerReviewMe: Warning: This is a unreviewed preprint. Readers are warned that the document has not been peer-reviewed by expert/patient reviewers or an academic editor, may contain misleading claims, and is likely to undergo changes before final publication, if accepted, or may have been rejected/withdrawn. Readers with interest and expertise are encouraged to sign up as peer-reviewer, if the paper is within an open peer-review period. Please cite this preprint only for review purposes or for grant applications and CVs (if you are the author). Background: Healthcare data is increasing in volume and complexity. Storing and analyzing this data to implement precision medicine initiatives and data driven research has exceeded the capabilities of traditional computer systems. Modern big data platforms must be adapted to the specific demands of healthcare and designed for scalability and growth. Objective: To (1) demonstrate the implementation of a data science platform built on open-source technology within a large, academic healthcare system and (2) describe two computational healthcare applications built on such a platform. Methods: A data science platform based on several open source technologies was deployed to support real-time, big data workloads. Data acquisition workflows for Apache Storm and NiFi were developed in Java and Python to capture patient monitoring and laboratory data for downstream analytics. Results: The use of emerging data management approaches along with open-source technologies such as Hadoop can be used to create integrated data lakes to store large, real-time data sets. This infrastructure also provides a robust analytics platform where healthcare and biomedical research data can be analyzed in near real-time for precision medicine and computational healthcare use cases. Conclusions: The implementation and use of integrated data science platforms offer organizations the opportunity to combine traditional data sets, including data from the electronic health record, with emerging big data sources, such as continuous patient monitoring and real-time laboratory results. These platforms can enable cost-effective and scalable analytics for the information that will be key to the delivery of precision medicine initiatives. Organizations that can take advantage of the technical advances found in data science platforms will have the opportunity to provide comprehensive access to healthcare data for computational healthcare and precision medicine research.

This publication has 15 references indexed in Scilit: