Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations

Abstract
The ability to identify low-frequency genetic variants among heterogeneous populations of cells or DNA molecules is important in many fields of basic science, clinical medicine and other applications, yet current high-throughput DNA sequencing technologies have an error rate between 1 per 100 and 1 per 1,000 base pairs sequenced, which obscures their presence below this level. As next-generation sequencing technologies evolved over the decade, throughput has improved markedly, but raw accuracy has remained generally unchanged. Researchers with a need for high accuracy developed data filtering methods and incremental biochemical improvements that modestly improve low-frequency variant detection, but background errors remain limiting in many fields. The most profoundly impactful means for reducing errors, first developed approximately 7 years ago, has been the concept of single-molecule consensus sequencing. This entails redundant sequencing of multiple copies of a given specific DNA molecule and discounting of variants that are not present in all or most of the copies as likely errors. Consensus sequencing can be achieved by labelling each molecule with a unique molecular barcode before generating copies, which allows subsequent comparison of these copies or schemes whereby copies are physically joined and sequenced together. Because of trade-offs in cost, time and accuracy, no single method is optimal for every application, and each method should be considered on a case-by-case basis. Major applications for high-accuracy DNA sequencing include non-invasive cancer diagnostics, cancer screening, early detection of cancer relapse or impending drug resistance, infectious disease applications, prenatal diagnostics, forensics and mutagenesis assessment. Future advances in ultra-high-accuracy sequencing are likely to be driven by an emerging generation of single-molecule sequencers, particularly those that allow independent sequence comparison of both strands of native DNA duplexes.