Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles

Abstract
An engineered enhancement in short-circuit current density and energy conversion efficiency in amorphous silicon p-i-n solar cells is achieved via improved transmission of electromagnetic radiation arising from forward scattering by surface plasmon polariton modes in Au nanoparticles deposited above the amorphous silicon film. For a Au nanoparticle density of ∼3.7×108cm−2, an 8.1% increase in short-circuit current density and an 8.3% increase in energy conversion efficiency are observed. Finite-element electromagnetic simulations confirm the expected increase in transmission of electromagnetic radiation at visible wavelengths, and suggest that substantially larger improvements should be attainable for higher nanoparticle densities.