Abstract
The performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on 29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Regional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a polarimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis.Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with independent radar observations in general. However, simulated polarimetric signatures obtained from analyses using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the general structure, location, and intensity of the signatures than those generated from analyses using an SM scheme.These results demonstrate for the first time for a real supercell storm that EnKF data assimilation using a numerical model with an adequate microphysics scheme (i.e., a scheme that predicts at least two moments of the hydrometeor size distributions) is capable of producing polarimetric radar signatures similar to those seen in observations without directly assimilating polarimetric data. In such cases, the polarimetric data also serve as completely independent observations for the verification purposes.

This publication has 55 references indexed in Scilit: