Functional Cooperation between c-Cbl and Src-Like Adaptor Protein 2 in the Negative Regulation of T-Cell Receptor Signaling

Abstract
Adaptor proteins assemble multiprotein signaling complexes, enabling the transduction of intracellular signals. While many adaptor proteins positively regulate signaling in this manner, a subgroup of adaptors function as negative regulators. Here we report the identification of a hematopoiesis-specific adaptor protein that we have designated Src-like adaptor protein 2 (SLAP-2). SLAP-2 is most closely related to SLAP and contains a Src homology 3 (SH3) domain and an SH2 domain, as well as an amino-terminal myristoylation site that mediates SLAP-2 association with membranes. Following stimulation of primary thymocytes with anti-CD3 and anti-CD28, SLAP-2 coimmunoprecipitates with tyrosine-phosphorylated c-Cbl and an unidentified protein of approximately 72 kDa. In activated Jurkat T cells, SLAP-2 also binds an additional 70-kDa phosphoprotein, identified as ZAP-70. Binding of SLAP-2 to both p72 and ZAP-70 is dependent on its SH2 domain, while c-Cbl interacts with the carboxy-terminal region. Overexpression of wild-type SLAP-2 alone or in combination with c-Cbl in Jurkat T cells leads to inhibition of T-cell antigen receptor-induced activation of nuclear factor of activated T cells. The inhibitory effect of SLAP-2 requires the carboxy-terminal c-Cbl binding region. Expression of SLAP-2 with SYK or ZAP-70 in COS cells or Jurkat T cells causes the degradation of these kinases, and SLAP-2 overexpression in Jurkat T cells reduces the surface expression of CD3. These results suggest that the mechanism of action of SLAP-2 and the related protein SLAP is to promote c-Cbl-dependent degradation of the tyrosine kinases SYK and ZAP-70 and down-regulation of CD3 at the cell surface.