Cytosolic free calcium in adipocytes. Distinct mechanisms of regulation and effects on insulin action.

  • 5 August 1989
    • journal article
    • Vol. 264 (22), 12754-7
Abstract
It has been proposed that an elevation in cytosolic free Ca2+ may play a role in either mediating or antagonizing the ability of insulin to stimulate glucose uptake in adipocytes. This question has been addressed in the present studies using isolated fura-2-loaded rat adipocytes stimulated with a variety of agonists. The effects of insulin, oxytocin, norepinephrine, ATP, and ionomycin on cytosolic free Ca2+ levels were assessed and compared with their effects on transport-limited glucose oxidation. Oxytocin and ionomycin at concentrations which caused 3-5-fold increases in cytosolic Ca2+, by releasing Ca2+ from internal stores, had no effect on insulin-stimulated glucose oxidation. ATP and norepinephrine which caused more modest increases in Ca2+, by mechanisms at least partially dependent on external stores, inhibited insulin-stimulated glucose oxidation. Insulin had no effect on basal Ca2+ levels nor did it modulate the Ca2+ elevation caused by other agonists. These data suggest that insulin-stimulated glucose transport is not associated with an increase in cytosolic Ca2+. In addition, although there appears to be a correlation between inhibition of insulin-stimulated glucose transport and the effect of certain agonists to promote Ca2+ influx, there is not a general obligatory relationship between an elevation in cytosolic Ca2+ and antagonism of this insulin action.