Dietary Exposure to 2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE-47) Alters Thyroid Status and Thyroid Hormone–Regulated Gene Transcription in the Pituitary and Brain

Abstract
Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. We examined the effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)—commonly the highest concentrated PBDE in human tissues—on plasma TH levels and on gene transcripts for glycoprotein hormone α-subunit (GPHα) and thyrotropin β-subunit (TSHβ) in the pituitary gland, the autoinduced TH receptors α and β in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 μg/pair/day or 12.3 μg/pair/day) for 21 days. Minnows exposed to PBDE-47 had depressed plasma thyroxine (T4), but not 3,5,3′-triiodothyronine (T3). This decline in T4 was accompanied by elevated mRNA levels for TStHβ (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor αin the brain of females and decreased mRNA for TH receptor β in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants.