Superlattices consisting of “lines” of adsorbed hydrogen atom pairs on graphene

Abstract
The structures and electron properties of new superlattices formed on graphene by adsorbed hydrogen molecules are theoretically described. It has been shown that superlattices of the (n, 0) zigzag type with linearly arranged pairs of H atoms have band structures similar to the spectra of (n, 0) carbon nanotubes. At the same time, superlattices of the (n, n) type with a “staircase” of adsorbed pairs of H atoms are substantially metallic with a high density of electronic states at the Fermi level and this property distinguishes their spectra from the spectra of the corresponding (n, n) nanotubes. The features of the spectra have the Van Hove form, which is characteristic of each individual superlattice. The possibility of using such planar structures with nanometer thickness is discussed.