Design of Static Output Feedback Sliding Mode Control for Uncertain Linear Systems

Abstract
This paper considers the problem of designing a sliding mode controller via static output feedback for a class of uncertain systems with mismatched uncertainty in the state matrix. First, we derive a new existence condition of linear sliding surface in terms of strict linear matrix inequalities (LMIs) and propose an adaptive reaching control law such that the motion of the closed-loop system satisfies the reaching condition. Second, we further consider the delay-type switching function, and a new robust stability condition is given in terms of LMIs for the reduced-order sliding mode dynamics. Then, a synthesis procedure is established to design the sliding surface parameters. Finally, three examples, including an aircraft model, are utilized to illustrate the design procedures proposed in this paper.

This publication has 32 references indexed in Scilit: