Distributed Embedded Smart Cameras for Surveillance Applications

Abstract
Recent advances in computing, communication, and sensor technology are pushing the development of many new applications. This trend is especially evident in pervasive computing, sensor networks, and embedded systems. Smart cameras, one example of this innovation, are equipped with a high-performance onboard computing and communication infrastructure, combining video sensing, processing, and communications in a single embedded device. By providing access to many views through cooperation among individual cameras, networks of embedded cameras can potentially support more complex and challenging applications - including smart rooms, surveillance, tracking, and motion analysis - than a single camera. We designed our smart camera as a fully embedded system, focusing on power consumption, QoS management, and limited resources. The camera is a scalable, embedded, high-performance, multiprocessor platform consisting of a network processor and a variable number of digital signal processors (DSPs). Using the implemented software framework, our embedded cameras offer system-level services such as dynamic load distribution and task reconfiguration. In addition, we combined several smart cameras to form a distributed embedded surveillance system that supports cooperation and communication among cameras.

This publication has 5 references indexed in Scilit: