Control of Gait Initiation

Abstract
The initiation of gait from a standing posture by 6 subjects, who took controlled-length steps, was analyzed. Using an inverted-pendulum model, we found that the duration of gait initiation was independent of gait velocity. This finding suggests that subjects' biomechanical constants are the determining factors for initiating movement. Both the instantaneous velocity of the center of gravity at the end of the first step (resulting in the propulsive forces measured on the ground) and the steady-state velocity (resulting in the step length and frequency) varied with step length, whereas step frequency did not. But step frequency and progression velocity were linked, for step frequency always increased in parallel with increased progression velocity. We interpret the correlation between velocity and frequency variations to be a peripheral expression of the posturodynamic control of the step parameters by the progression forces.