Universal Response in Liquid Chromatography Using Charged Aerosol Detection

Abstract
A new, empirical approach is introduced to correct for the varying response of aerosol-based detectors with the varying composition of the mobile phase during gradient elution in HPLC. A Corona charged aerosol detector was used in the experiments. The detector is characterized by a nearly universal response at a given, constant mobile-phase composition for sufficiently nonvolatile analytes. A second pump was used to deliver an exactly inverse gradient compared to the analytical HPLC system, and both flows were mixed in a tee piece before introduction to the Corona detector. The approach proposed made it possible to extend the universal response from isocratic to gradient elution conditions in HPLC, vastly improving the usefulness of this detection technique. The constant response of the detector obtained in this way was first demonstrated in flow injection analysis. Very similar calibration curves were obtained for six sulfonamide drugs after mobile-phase compensation. The approach was also applied to gradient elution with excellent results. The data were characterized by good precision ranging from 4% RSD at 10 mg/L to 1.6% RSD at 780 mg/L. The average limit of detection with a 2-μL injection was 0.5 mg/L, corresponding to 1 ng injected on the column. The approach proposed allows quantification of unknown compounds, e.g., in pharmaceutical mixtures. Measurement of analytes at a relative concentration of 0.05% versus the main component is demonstrated.