IL-6 and Serum Amyloid A Synergy Mediates Angiotensin II–Induced Muscle Wasting

Abstract
Animal studies suggest that increased levels of circulating angiotensin II (AngII) could contribute to the loss of lean body mass in chronic kidney disease, but the mechanism by which this occurs is unclear. Here, AngII infusion increased circulating IL-6 and its hepatic production in wild-type mice, suggesting that AngII-induced inflammation may trigger muscle loss. AngII infusion also stimulated the suppressor of cytokine signaling (SOCS3) in muscle, which led to loss of insulin receptor substrate 1 (IRS-1), thereby impairing insulin/IGF-1 signaling and enhancing protein degradation. All of these responses to AngII were suppressed in IL-6–deficient mice. Recombinant human IL-6 (rhIL-6) treatment of cultured myotubes only minimally increased SOCS3, however, suggesting the contribution of other mediators. Because AngII increases hepatic serum amyloid A (SAA) expression in an IL-6–dependent manner, we treated wild-type mice with rhIL-6 and an SAA1-overexpressing adenovirus; the combination led to a significantly greater increase in SOCS3 and decrease in IRS-1 compared with either rhIL-6 or SAA1 alone. We observed similar effects on SOCS3 and IRS-1 when we treated cultured muscle myotubes with rhIL-6 and SAA1. Taken together, these results suggest an interorgan response to high levels of AngII: Hepatic production of IL-6 and SAA increases, and these mediators act synergistically to impair insulin/IGF-1 signaling, which promotes muscle proteolysis. Targeting the high levels of IL-6 and SAA in catabolic disorders might be a therapeutic approach to prevent muscle wasting.