Low selfing in a mass‐flowering, endangered perennial, Eryngium alpinum L. (Apiaceae)

Abstract
We investigated the reproductive ecology of an endangered alpine species, Eryngium alpinum L., to determine its selfing rate and to propose possible mechanisms that may shape its breeding system. Whereas pollinators' foraging behavior suggested a high potential for geitonogamy (70% of the flights occur within plants), microsatellite analyses of seed progenies demonstrated that plants are primarily outcrossing (outcrossing rate [tm] = 0.65, 0.96, and 1 in three populations). Given the relatively long pollen viability (at least 4-5 d) and the high number of simultaneously opened flowers on each plant, protandry is not sufficient to eliminate selfing. Second, controlled crosses demonstrated not only auto-fertility, but also partial self-incompatibility. Partial self-incompatibility is probably due to the competitive advantage of cross vs. self-pollen, and, together with protandry, could lead the species to selfing as a reproductive assurance. These results are encouraging for the maintenance of large populations. However, higher selfing was observed in a small population that could suffer inbreeding depression, as observed on experimentally selfed seeds. Thus, these populations should be carefully monitored. Finally, this study shows how molecular markers and field experiments may complement each other in our reaching a global understanding of mating patterns.