Characteristics of alcohol/polyol dehydrogenases

Abstract
Sixteen characterized alcohol dehydrogenases and one sorbitol dehydrogenase have been aligned. The proteins represent two formally different enzyme activities (EC 1.1.1.1 and EC 1.1.1.14), three different types of molecule (dimeric alcohol dehydrogenase, tetrameric alcohol dehydrogenase, tetrameric sorbitol dehydrogenase), metalloproteins with different zinc contents (1 or 2 atoms per subunit), and polypeptide chains from different kingdoms and orders (mammals, higher plants, fungus, yeasts). Present comparisons utilizing all 17 forms reveal extensive variations in alcohol dehydrogenase, but with evolutionary changes that are of the same order in different branches and at different times. They emphasize the general importance of particular residues, suggesting related overall functional constraints in the molecules. The comparisons also define a few coincidences between intron positions in the genes and gap positions in the gene products. Only 22 residues are strictly conserved; half of these are Gly, and most of the remaining ones are Pro or acidic residues. No basic residues, no straight-chain hydrophobic residues, no aromatic residues, and essentially no branched-chain or polar neutral residues are invariable. Tentative consensus sequences were calculated, defining 13 additional residues likely to be typical of but not invariant among the alcohol dehydrogenases. These show a predominance of Val, charged residues, and Gly. Combined, the comparisons, which are particularly relevant to the data base for protein engineering, illustrate the requirements for functionally important binding interactions, and the extent of space restrictions in proteins with related overall conformations and functions.