User cooperation in wireless powered communication networks

Abstract
This paper studies user cooperation in the emerging wireless powered communication network (WPCN) for throughput optimization. For the purpose of exposition, we consider a two-user WPCN, in which one hybrid access point (H-AP) broadcasts wireless energy to two distributed users in the downlink (DL) and the users transmit their independent information using their individually harvested energy to the H-AP in the uplink (UL) through time-division-multiple-access (TDMA). We propose user cooperation in the WPCN where the user that is nearer to the H-AP and in general has a better channel for DL energy harvesting as well as UL information transmission uses part of its allocated UL time and DL harvested energy to help relay the far user's information to the H-AP, in order to achieve more balanced throughput. We maximize the weighted sum-rate (WSR) of the two users by jointly optimizing the time and power allocations in the network for both wireless energy transfer in the DL and wireless information transmission and relaying in the UL. Simulation results show that the proposed user cooperation scheme can effectively improve the achievable throughput in the WPCN with desired user fairness.

This publication has 13 references indexed in Scilit: