Millimeter Wave Channel Measurements and Implications for PHY Layer Design

Abstract
There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit–receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.

This publication has 37 references indexed in Scilit: