Recent progress in GeSn growth and GeSn-based photonic devices

Abstract
The GeSn binary alloy is a new group IV material that exhibits a direct bandgap when the Sn content exceeds 6%. It shows great potential for laser use in optoelectronic integration circuits (OEIC) on account of its low light emission efficiency arising from the indirect bandgap characteristics of Si and Ge. The bandgap of GeSn can be tuned from 0.6 to 0 eV by varying the Sn content, thus making this alloy suitable for use in near-infrared and mid-infrared detectors. In this paper, the growth of the GeSn alloy is first reviewed. Subsequently, GeSn photodetectors, light emitting diodes, and lasers are discussed. The GeSn alloy presents a promising pathway for the monolithic integration of Si photonic circuits by the complementary metal-oxide-semiconductor (CMOS) technology.